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We consider a function f : Rn → R and assume for it to be differentiable
with continuity at least two times (that is, all of the partial derivative functions,
which in different notations are written as: fij = fxixj

= ∂2
ijf = ∂2

xixj
f :=

∂2f
∂xi∂xj

: Rn → R for i, j ∈ {1, . . . , n}, are continuous).

We recall that a critical point of f is by definition a point P ∈ Rn such that
the gradient of f is zero in P :

∇f(P ) = 0, or, in a more explicit notation,


∂f
∂x1

(P )
...

∂f
∂xn

(P )

 =

 0
...
0

 .

We are going to see a way (which is actually the most standard one) in which
we can (sometimes) tell, for a critical point P , whether it is a local maximum,
a local minimum, or a saddle point. We will use for that the matrix of second
derivatives of f , also called the Hessian matrix of f at point P . This matrix will
be denoted by Hf(P ) and (after giving a proper meaning to the words “best
approximant”) is equal to:

Hf(P ) :=


∂2f

∂x1
∂x1

(P ) ∂2f
∂x1

∂x2
(P ) · · · ∂2f

∂x1
∂xn

(P )
∂2f

∂x2∂x1
(P ) ∂2f

∂x2∂x2
(P ) · · · ∂2f

∂x2∂xn
(P )

...
...

. . .
...

∂2f
∂xn∂x1

(P ) ∂2f
∂xn∂x2

(P ) · · · ∂2f
∂xn∂xn

(P )

 .

1 Geometrical meaning of Gradient and Hessian

1.1 What does the gradient of a function of one variable
represent?

We recall that for a function f : R → R of one single variable, the derivative
f ′(P ) at some point had the following geometrical meaning. Consider the graph
of f , namely the points G(f) := {(x, y) ∈ R2 : y = f(x)}. Usually we draw this
subset of R2 and refer to it directly as ”the function f”, implicitly identifying
it to the function itself.
Then recall that f ′(P ) was representing the inclination of the tangent line to
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the graph G(f) at the point (P, F (P )).
In particular, in the case of a critical point (in other words, when f ′(P ) = 0)
this tangent line at the point where x = P would have to be horizontal. That
is, the linear function which best approximates f near P is the constant function.

1.1.1 Taylor’s polynomial of first degree

Another way of finding the lineanction which best approximates f near P is by
considering the so-called Taylor’s polyniomial of first degree. This polynomial,
denoted by j1

P f(x), is defined as:

j1
P f(x) = f(P ) + f ′(P )(x− P ) = (when f ′(P ) = 0 ) = f(P ).

Another way of thinking about j1
P f(x) is as the “easiest” function g satisfying

g(P ) = f(P ) and g′(P ) = f ′(P ).

1.2 What does the hessian of a function of one variable
represent?

Now suppose we want to find how much f deviates from the “best approximant
o first degree j1

P f near P”. How would you measure this?
We first consider the difference function

d(x) := f(x)− j1
P f(x) = f(x)− f(P )− f ′(P )(x− P ),

and the goal would now be trying to approximate d in the nicest way possible.
We observe that now the “best approximant of first degree of d(x)” is now
just zero, consistently with the idea of a “best approximant”: if d would have
an approximant D better than zero, then also j1

P f + D would be a better
approximant to f than just j1

P f !
If we want to “follow the trend” established above, the reasonable thing would
be to try to find a “best approximant of second degree” for f . This will be the
second degree Taylor polynomial, which is (in some sense, which is not made
precise here) the “polynomial of second degree which best approximates f(x)”,
and is defined as:

j2
P f(x) = f(P ) + f ′(P )(x− P ) +

1

2!
f ′′(P )(x− P )2.

Let’s now concentrate on the new term which comes in when passing from the
best first degree approximant j1

P f to the best second degree approximant j2
P :

this term is
1

2!
f ′′(P )(x− P )2,

so it depends basically on the second derivative of f at P , i.e on the hessian of
f !
The meaning of f ′′(P ) is best seen if we consider the case when P is a critical
point of f : as seen above, in this case (i.e. when f ′(P ) = 0), the tangent to the
graph of f at the point (P, f(P )) is horizontal. We are now saying that f near
P is best approximated by the polynomial

f(P ) +
1

2!
f ′′(P )(x− P )2.
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This polynomial has as graph a parabola with vertex P , and with the “arms
going up” if f ′′(P ) > 0, or with “arms going down” if f ′′(P ) < 0. If f stays
close fo the parabola with arms going up, then P will be a local minimum for
f , and if f will stay close to a parabola with arms going down, then P will be
a local maximum for f . If f ′′(P ) = 0 we have that the best approximant of
second degree is again not enough in order to really tell the behavior of f near
P , since as in the case of the best approximant of first degree, this will be again
the constant function! To summarize, we can write:

If f ′(P ) = 0, then, in case f ′′(P )

 < 0 then P is a local maximum for f,
> 0 then P is a local minimum for f,
= 0 then we cannot yet say what kind of critical point P is.

Now we can pass to describing the analogous interpretations of gradient vector
and hessian matrix in the case when f has more variables, i.e. when f : Rn → R
for dimensions n > 1.

1.3 Gradient and Hessian in more variables

As we saw above, the key to understanding the meaning of the first and second
derivatives, at least in the discussion of critical points, is the Taylor’s polynomial
of f . So I would like to write down the formulas for the first and second order
Taylor polynomials in the case of a function f : Rn → R. The formulas are
analogous to the ones for f : R → R. We will denote now the coordinates of
the point P ∈ Rn by (x̄1, . . . , x̄n) = P . Then the wanted formula for j1

P f is
(compare with the previous section, and see the similarity!):

j1
(x̄1,...,x̄n)f(x1, . . . , xn) = f(x̄1, . . . , x̄n) +

+∂x1
f(x̄1, . . . , x̄n)(x1 − x̄1) +

+∂x2
f(x̄1, . . . , x̄n)(x2 − x̄2) +

+ · · ·+
+∂xn

f(x̄1, . . . , x̄n)(xn − x̄n)

= f(P ) +

n∑
i=1

∂xi
f(P )(xi − x̄i)

= f(P ) +∇f(P ) · (x− P ),

where in the last row we denoted by “·” the scalar product on vectors of Rn.
We recall that if we have two vectors v = (v1, . . . , vn) and w = (w1, . . . , wn)
then the definition of “·” says that v ·w = v1w1 + · · ·+ vnwn =

∑n
i=1 viwi. This

justifies the last equality in the above formulas for j1
P f .

Again j1
P f(x) is the polynomial of degree 1 (this time in the variables x1, . . . , xn)

which best approximates f near P .
We can also give (this time with some more immagination) a more “geometric”
meaning to the gradient vector ∇f(P ), by considering the graph of f : this time
the graph is a subset of Rn+1, given by all the points (x, f(x)) for x ∈ Rn; if
∇f(P ) = 0 then the “tangent hyperplane” to the graph of f will be the one
parallel to the horizontal hyperplane {(x1, . . . , xn, 0) ∈ Rn+1}. Since in this case
j1
P f(x) = f(P ), we see that when approximating f with first degree polynomials

near P , we cannot distinguish it from a constant function.
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Passing to the approximation via second degree polynomials, we obtain the
second degree Taylor polynomial

j2
P f(x) = f(P ) +

n∑
i=1

∂xif(P )(xi − x̄i) +
1

2!

n∑
i,j=1

∂xi∂xjf(P )(xi − x̄i)(xj − x̄j)

= f(P ) +∇f(P ) · (x− P ) + (x− P )T ·Hf(P ) · (x− P ).

In the above last row we used the following notation from linear algebra: if v, w
are vectors in Rn and A is a n× n matrix, then we write

vT ·A · w =

n∑
i,j=1

aiAijwj .

Observe that Hf(P ) is the matrix of second derivatives of f at point P , having
as (i, j)-entry the number ∂i∂jf(P ), so the last equality of the above formula
for j2

P f(x) is justified.

1.3.1 More about the term involving the Hessian matrix, in the case
of a critcal point P

We will try here to imitate the discussion of Section 1.2 about the meaning of
second derivatives of f near a critical point P , in the case of f with more than
one variable. For a critical point, the function will be well aprroximated by the
Taylor polynomial

j2
P f(x) = f(P ) + (x− P )T ·Hf(P ) · (x− P ),

and in order to avoid cumbersome notations, we will assume that P is the origin
(so that the vector x − P appearing above, which represents the displacement
of x from the point P , becomes just = x). We thus have that our critical point
is the origin: ∇f(0) = 0, and so the above formula reads

j2
0f(x) = f(0) + xT ·Hf(0) · x.

In order to continue our discussion, we observe the following property of the
matrix of second derivatives of a C2-regular function (i.e. of a function whose
second derivatives exist and are continuous):

Theorem 1 If f : Rn → R is a function with continuous second derivatives,
then the double derivatives commute, i.e. for all i, j ∈ {1, . . . , n} and for all
points x ∈ Rn there holds

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x).

In terms of the Hessian matrix, the above theorem means that Hf(x) is for
all x ∈ Rn a symmetric matrix (i.e. the (i, j)-element of Hf(x) is equal to
the (j, i)-element: in other words the matrix is “symmetric with respect to the
diagonal”). Let’s recall more about such matrices.
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1.3.2 Symmetric matrices (reminders of the Linear Algebra class)

We recall that given a finite dimensional vector space V over the real numbers
R (for example Rn), endowed with a scalar product 〈·, ·〉 : V × V → R (for
example the euclidean scalar product 〈v, w〉 = v · w =

∑n
i=1 viwi on Rn), a

linear symmetric operator L : V → V is a linear operator such that for all
vectors v, w ∈ V there holds 〈v, L(w)〉 = 〈L(v), w〉. The following proposition
isquite easy to prove:

Proposition 2 Suppose A is a n × n symmetric matrix. Then the function
LA : Rn → Rn defined by

LA(v) = A · v,

defines a linear symmetric operator, with respect to the euclidean scalar product
on Rn given by v ·W =

∑n
i=1 viwi.

We recall that a vector v is an eigenvector of LA if A · v = λv for some number
λ ∈ R, in other words if v is sent by LA into a multiple of itself. If v is one of
the eigenvectors, then this number λ is called an eigenvalue (of A). (Maybe you
know that the eigenvalues for a general matrix A, can also be complex num-
bers. But it is also true that if A is symmetric, then they are actually all real
numbers!)
You should also remember what an orthonormal basis of Rn is: it is a basis such
that all its vectors are of length 1, and perpendicular to each other. The typical
example is the usual basis (made of the vectors like (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . .
which have all entries zero but one). In fact any orthonormal basis can be ob-
tained from the usual one after some rotation (to be applied to all vectors of
the basis) and/or after changing some vector into its opposite.
In the next theorem we see that up to the rotations just described above, any
linear function LA coming from a symmetric matrix assumes, in the new coor-
dinates, a diagonal form. This is the rigurous statement:

Theorem 3 (one of the equivalent formulations of the Spectral Theorem)
Given a symmetric n×n matrix A with real coefficients, it is possible to find an
orthonormal basis of eigenvectors for the associated linear operator LA : Rn →
Rn.
In particular, the matrix B representing LA with respect to this new basis will
have the form 

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

where λ1, . . . , λn are the eigenvalues of LA, repeated according to their multi-
plicity.

If you have some practice with linear algebra, you will be able to prove the
following lemmas (try first the case of 2×2 matrices, and then try to generalize!).
They are useful if you want to have some idea on the eigenvalues of a matrix A.

Lemma 4 Let A be a symmetric n × n matrix. Then the determinant of A
is equal to the product of the eigenvalues of the associated linear operator LA :
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Rn → Rn. [In particular, if A is in diagonal form, then det(A) is the product
of the elements on the diagonal.]

Lemma 5 Let A be a symmetric n× n matrix. Then the trace of A (which is
usually defined as the sum of the elements on the diagonal of A, i.e. tr(A) :=∑n

i=1 aii) is equal to the sum of the eigenvalues of A.

2 How to apply the knowledge about symmetric
matrices to the Taylor polynomial

We saw before that a function f which has “good” (continuous is enough) second
derivatives, is best approximated near a critical point (which, say, is the origin
0) by the (second degree) Taylor polynomial

j2
0F (x) = f(0) + x ·Hf(0) · x.

now, in order to understand the behavior of f near 0, we may also “rotate the
coordinate basis” like in Theorem 3, so that Hf(0) is in diagonal form, with
its eigenvalues on the diagonal! Why is that more convenient? Because the
expression above becomes much simpler: denote indeed by y = (y1, . . . , yn) the
coordinates in this new basis of a point x before “rotation”. Then (observe that
0 stays 0.. in the general case one would have to rotate the coordiantes around
the point P ) we have

j2
0f(y) = f(0) + y · [new Hf(0)] · y

= f(0) +

 y1

...
yn


T

·


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ·
 y1

...
yn


= f(0) +

n∑
i=1

λiy
2
i .

Now let’s interpret the last expression, to see how j2
0f(y) behaves for y near 0.

How does this polynomial change if we just vary one coordinate? Then, since
we allow just one coordinate to change, we obtain again a function of only one
variable, y1:

j2
0f(y) = λ1y

2
1 + f(0) +

n∑
i=2

λiy
2
i = λ1y

2
1 + constant.

The graph of this function can then be drawn in a plane (the horizontal axis
will be the y1-axis, the vertical coordinate measures the value of j2

0f), and it
can be discussed like in section 1.2:

1. if λ1 > 0 then it is a parabola with “arms up” ,

2. if λ1 = 0 then it is a horizontal line, and

3. if λ1 < 0 then it is a parabola ‘with “arms down”.
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Similarly we can vary any coordinate yi and the behavior along that direction
of j2

0f(y) will depend on the value of λi.
What happens if we change y along some direction not parallel to some coordi-
nate axis? For example, one may want y to change “along the direction” given
by the vector (a1, . . . , an). This would mean that we will take some mumber t
close to zero, and consider the multiples of this vector: y = t · (a1, . . . , an) =
(ta1, . . . , tan). Then we get:

j2
0f(y) = f(0) +

n∑
i=1

λi(tai)
2

= f(0) + t2
n∑

i=1

a2
iλi,

so here we get again a graph shaped like a parabola with “arms up” or “arms
down”, or a line, depending on whether the coefficient in front of t2 is positive,
zero, or negative. When do these three cases happen? There is no crystal-clear
answer to this. What is clear anyways, is the following:

1. If all the λi > 0, then
∑n

i=1 a
2
iλi > 0 for any vector (a1, . . . , an).

2. If all the λi < 0, then
∑n

i=1 a
2
iλi < 0 for any vector (a1, . . . , an).

In the first case, we can then infer that 0 was a minimum of f , since f stays
close to the Taylor polynomial, which has a minimum, near 0. Similarly, in the
second case 0 was a maximum of f .

What if the above cases do not happen? Would this correspond to the case
when for functions of one variable the first 2 derivatives were not enough to say
if the point was a maximum or a minimum?

Again here the answer is not as simple as expected, since it can happen for
functions of more variables that in some directions they have a local minimum
and in some others they have a local maximum in the given critical point (this
could not happen for functions of 1 variable, where the worst behavior was the
presence of a flex, as ofr example the point 0 for the function f(x) = x3). This
is the case if Hf(0) has some λi > 0 and at the same time some λj < 0: then if
we change just yi, f will have a minimum in 0, while if we change just yj then
0 will look like a maximum in that direction. This kind of critical points are
called saddle points.

When some λi = 0 then just the second Taylor polynomial is not enough
to predict the behavior of falong that direction, so one needs to consider better
approximants (in this sense the analogy with the 1-dimensional case continues
also here).
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