
Second Order Partial Derivatives; the Hessian
Matrix; Minima and Maxima

Second Order Partial Derivatives We have seen that the par-
tial derivatives of a differentiable function φ(X) = φ (x1, x2, ..., xn) are

again functions of n variables in their own right, denoted by

∂φ

∂xk
(x1, x2, ..., xn) , k = 1, 2, ..., n.

If these functions, in turn, remain differentiable, each one engenders
a further set of n functions, the second order partial derivatives of

φ (x1, x2, ..., xn):

∂φ

∂xk
(x1, x2, ..., xn) −→ ∂2φ

∂xj∂xk
(x1, x2, ..., xn) , j = 1, 2, ..., n.

The function φ (x1, x2, ..., xn) is said to be twice continuously differ-

entiable in a region D if each of these second order partial derivative
functions is, in fact, a continuous function in D. The partial derivatives

∂2φ
∂xj∂xk

for which j 6= k are called mixed partial derivatives. For them
we have a very important theorem, proved in 1734 by Leonhard Euler.

Theorem 1 (Equality of Mixed Partial Derivatives) If φ(X) =
φ (x1, x2, ..., xn) is continuously differentiable in a region D then, in that

region,

∂2φ

∂xj∂xk
(x1, x2, ..., xn) ≡ ∂2φ

∂xk∂xj
(x1, x2, ..., xn) .

Proof We will give the proof only for the case n = 2; the proof
for n > 2 is similar but a little more complicated. For n = 2 we

can replace x1 by x, x2 by y. Clearly there is nothing to prove for the
“unmixed” partial derivatives ∂2φ

∂x2 ,
∂2φ
∂y2 .
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With X0 = (x0, y0) ∈ D and ∆x 6= 0, ∆y 6= 0, we form the double
difference

S (X0, ∆x, ∆y) = φ (x0 + ∆x, y0 + ∆y) − φ (x0 + ∆x, y0)

− (φ (x0, y0 + ∆y) − φ (x0, y0)) .

Let g(x) = φ (x, y0 + ∆y) − φ (x, y0). Then

S (X0, ∆x, ∆y) = g(x0 + ∆x) − g(x0).

The differentiability of φ implies that of g. Applying the mean value

theorem of elementary calculus, there is a value ξ between x0 and x0 +
∆x such that

g(x0 + ∆x) − g(x0) =
dg

dx
(ξ) ∆x, i.e.,

S (X0, ∆x, ∆y) =

(
∂φ

∂x
(ξ, y0 + ∆y) − ∂φ

∂x
(ξ, y0)

)
∆x.

Applying the mean value theorem again, there is a value η between y0

and y0 + ∆y such that

S (X0, ∆x, ∆y) =
∂2φ

∂y∂x
(ξ, η) ∆x ∆y.

Since the point ξ, η must tend to (x0, y0) as ∆x and ∆y both tend to
zero, the continuity of ∂2φ

∂y∂x
implies that

∂2φ

∂y∂x
(x0, y0) = lim

∆x,∆y → 0

S (X0, ∆x, ∆y)

∆x ∆y
.

Starting with h(y) = φ (x0 + ∆x, y)− φ (x0, y) and reversing the order
of the above argument, we arrive in much the same way at

∂2φ

∂x∂y
(x0, y0) = lim

∆x,∆y → 0

S (X0, ∆x, ∆y)

∆x ∆y
.

Since X0 is an arbitrary point in D, the theorem is proved.
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Analyzing Stationary Points Suppose φ(x, y) is twice continu-
ously differentiable and X0 = (x0, y0)

∗ is a stationary point for the

function. In the section on minima and maxima and the gradi-
ent method we began to explore the use of the second order partial

derivatives at the stationary point X0 as a tool for determining whether
X0 is a maximum, a minimum, or neither. It is easy to see, in this two
dimensional context, that evaluation of ∂2φ

∂x2 and ∂2φ
∂y2 will not always be

decisive this way. The function φ(x, y) = x2 + 4xy + y2 is easily seen
to have a critical point at the origin, x = y = 0, and the second order

partial derivatives ∂2φ
∂x2 and ∂2φ

∂y2 there are both equal to 2. But (0, 0) is
not a minimum because on the diagonal line x = t, y = −t we have

φ(t,−t) = 2 t2 − 4 t2 = −2 t2, so that φ decreases as the point (x, y)
moves away from the origin along this line. We need a more systematic

analysis to assist us in classifying stationary points.

Such an analysis can be developed in a general context in Rn if
we assume the function φ(X) is twice continuously differentiable; the

first and second order partial derivatives are all defined and continuous
throughout the region D of interest. When this is the case we can define
the Hessian matrix

Hφ(X) =




∂2φ
∂x2

1
(X) ∂2φ

∂x2∂x1
(X) · · · ∂2φ

∂xn∂x1
(X)

∂2φ
∂x1∂x2

(X) ∂2φ
∂x2

2
(X) · · · ∂2φ

∂xn∂x2
(X)

...
...

...
∂2φ

∂x1∂xn
(X) ∂2φ

∂x2∂xn
(X) · · · ∂2φ

∂x2
n
(X)




.

This matrix is always symmetric, i.e., Hφ(X)∗ = Hφ(X), as a conse-
quence of the equality of mixed second order partial derivatives proved

above. In terms of vector differential operators already defined we have

Hφ(X) = ∇(∇φ)∗(X);

one forms the (column) gradient vector field (∇φ)∗(X) and then the

3



Jacobian matrix of that vector field. For this reason we write

Hφ(X) ≡ ∇2φ(X).

Proposition Suppose φ(X) is twice continuously differentiable in a
region D which includes the point X0. Then, for X near X0 in D,

φ(X) = φ(X0) + ∇φ(X0) (X − X0)

+
1

2
(X − X0)

∗∇2φ(X0) (X − X0) + o(‖X − X0‖2),

where o(‖X − X0‖2) indicates the presence of a remainder function

r(X) with the property

lim
‖X−X0‖→ 0

r(X)

‖X − X0‖2 = 0.

Proof Let U be an arbitrary unit vector, X(t) = X0 + t U . Then
we set

f(t) = φ(X(t)).

For a twice continuously differentiable function f(t), Taylor’s Formula,

with remainder taken after the second order term, says that, as t → 0,

f(t) = f(0) + f
′
(0) t +

1

2
f

′′
(0) t2 + o(

∣∣∣t2
∣∣∣).

Here we have f(0) = φ(X0) and

f
′
(t) =

d

dt
φ (X0 + tU) = ∇φ (X0 + tU)

d

dt
(X0 + tU)

= ∇φ (X0 + tU) U

and thus

f
′
(0) = ∇φ (X0) U.

4



Continuing, we have

f
′′
(t) =

d

dt
f

′
(t) =

d

dt
(∇φ (X0 + tU)U) .

Since for real column vectors Z∗W = W ∗Z, this is the same as

d

dt
(U∗∇φ (X0 + tU)∗) = U∗ d

dt
(∇φ (X0 + tU)∗)

= U∗∇∇∗φ (X0 + tU)U.

Evaluating at t = 0 we have

f
′′
(0) = U∗∇∇∗φ (X0) U = U∗∇2φ (X0) U.

Thus we have, as t → 0,

φ(X(t)) = f(t) = φ(X0) + ∇φ(X0) tU +
1

2
tU∗∇2φ(X0) tU + o(|t|2).

Since X(t) = X0 + t U we have ‖X(t) − X0‖ = |t| ‖U‖ = |t|. Since
every choice of X corresponds to a choice of U via U = X−X0

‖X−X0‖ , every X

near X0 corresponds to X = X(t) = X0 + t U for small |t|. Replacing

t U by X −X0 and o
∣∣∣t2
∣∣∣ by o(‖X − X0‖2), we have, as ‖X − X0‖ → 0,

φ(X(t)) = φ(X0) + ∇φ(X0) (X − X0)

+
1

2
(X − X0)

∗∇2φ(X0) (X − X0) + o(‖X − X0‖2)

as claimed. This completes the proof.

The first three terms in the formula just obtained are referred to as
the second order Taylor approximation to φ(X) based on the point X0.

We intend to put this result to use in analyzing stationary points.

Before we can do that, however, we have to introduce some new con-
cepts.
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Definition Let A be an n × n matrix and let X ∈ Rn. The scalar
valued function

q(X) = X∗AX =
n∑

j=1

n∑

k=1
ajk xjxk

is the quadratic form in X associated with the matrix A.

Example 1 Let A be the 3 × 3 matrix

A =




2 −2 3
1 1 2

0 −1 1


 .

Then, for X = (x y z)∗, the quadratic form in X associated with A is

q(X) = q(x, y, z) = 2x2 − 2xy + 3xz + yx + y2 + 2yz − zy + z2

= 2x2 + y2 + z2 − xy + 3xz + yz.

Thus a quadratic form in X is a function which is a linear combination
of products of components of X, taken two at a time. The matrix

A serves to provide the coefficients accompanying these products in
forming q(X).

Proposition For real vectors X ∈ Rn and real matrices A we can

assume without loss of generality, in forming quadratic forms q(X) =
X∗AX, that A is symmetric, i.e., A∗ = A; ajk = akj, j, k =
1, 2, ..., n.

Proof Since q(X) is a real scalar, q(X)∗ = q(X) and therefore

q(X) =
1

2
(q(X)∗ + q(X)) =

1

2
((X∗AX)∗ + X∗AX)

=
1

2
(X∗A∗ X + X∗AX) = X∗

(
1

2
(A∗ + A)

)
X ≡ X∗ÃX.

Since we readily see that (A∗ + A)∗ = A + A∗ = A∗ + A, the matrix
Ã is symmetric and the result follows.
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Example 1, Continued For the 3 × 3 matrix A shown earlier and
the associated quadratic form q(X) we also have

q(X) = X∗ÃX, Ã =




2 −1
2

3
2

−1
2 1 1

2
3
2

1
2 1


 .

From this point on, when discussing quadratic forms, we will assume

A is symmetric unless specifically indicated to the contrary.

Definition The quadratic form q(X) = X∗AX is positive (definite)
if and only if X 6= 0 ⇒ q(X) > 0. It is non-negative if q(X) ≥ 0

for all X. The quadratic form is negative (definite) if −q(X) is positive
definite; non-positive if −q(X) is non-negative. If none of these are true

then q(X) is indefinite. One commonly refers to the matrix A as being
positive, non-negative, negative, non-positive or indefinite according as
the quadratic form q(X) = X∗AX has the property in question.

Example 2 Consider the quadratic form in X = (x, y):

q(X) = q(x, y) = (x y )

(
1 α

α 1

)(
x

y

)

= x2 + 2α xy + y2.

If |α| < 1 we can write

x2 + 2α xy + y2 = x2 + 2α xy + α2 y2 + (1 − α2)y2

= (x + α y)2 + (1 − α2)y2

and it is easy to see that q(X) is positive. If |α| = 1 the above becomes

q(X) = (x + α y)2 ≥ 0

and we conclude q(X) is non-negative but not positive. If |α| > 1 we

see that q(X) is positive if x 6= 0, y = 0 but negative if y 6= 0 and
x = −α y, hence q(X) is indefinite.
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The quadratic form of greatest interest for the study of maxima and
minima is the third term, 1

2 (X −X0)
∗∇2φ(X0) (X −X0) in the second

order Taylor approximation developed earlier. When φ(X) is twice
continuously differentiable in some region containing a stationary point

X0, so that ∇φ(X0) = 0 and the first order term ∇φ (X0) (X − X0)
of the Taylor approximation vanishes, this quadratic form determines
whether X0 is a local minimum, a local maximum, or neither.

Theorem If X0 is a stationary point for the twice continuously dif-
ferentiable function φ(X) then:

i) If ∇2φ(X0) is positive, then X0 is a local minimum for φ(X);

ii) If ∇2φ(X0) is negative, then X0 is a local maximum for φ(X);

iii) If ∇2φ(X0) is indefinite, then X0 is neither a local minimum nor

a local maximum for φ(X);

iv) If ∇2φ(X0) is none of the above, hence just non-negative or non-
positive, then the term 1

2 (X −X0)
∗∇2φ(X0)(X −X0) is not decisive in

determining the character of the stationary point X0.

Sketch of Proof We use the term “sketch” here because there are
some details which should be added to what we give below to make the
proof entirely rigorous; these details are not essential to understanding

the concepts involved.

We select a unit vector U and consider the straight line X(t) =
X0 + t U , which passes through X0 when t = 0. With f(t) = φ(X(t))

we have f
′
(0) = ∇φ(X0) U = 0. It will then be familiar from the

standard calculus that f(t) has a local minimum at t = 0 if f
′′
(0) > 0

and a local maximum at t = 0 if f
′′
(0) < 0. The hypotheses of i)

and ii) guarantee f
′′
(0) = U∗∇2φ(X0) U positive in the case of i) and

negative in the case of ii), for any choice of of the unit vector U . Thus
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in the case of i), φ(X) increases in every direction as X is displaced
away from X0, provided that displacement remains small. Similarly,

in the case of ii), φ(X) decreases in every direction as X is slightly
displaced away from X0. We conclude that φ(X) has a local minimum

at X0 in the first case and a local maximum there in the second case.

If iii) applies, we find unit vectors U, V such that U∗∇2φ(X0) U > 0
and V ∗∇2φ(X0) V < 0. We let X(t) = X0 + t U, Ξ(t) = X0 + t V .

We then see that f(t) = φ(X(t)) has a local minimum at t = 0 while
g(t) = φ(Ξ(t)) has a local maximum there. Thus φ(X) increases as
X is slightly displaced away from X0 in the U direction and decreases

when X is slightly displaced away from X0 in the V direction. We
conclude that X0 is neither a local maximum nor a local minimum in

this case.

The situation described in iv) is readily illustrated with the example
φ(x, y) = x2 + α y4. Regardless of the value of α, the Hessian at the

origin is

∇2φ(0, 0) =

(
1 0
0 0

)
,

which is easily seen to be non-negative but not positive. For α > 0 the

function φ(x, y) clearly has a minimum at (0, 0); for α < 0, on the other
hand, φ(x, 0) > 0 = φ(0, 0) for x 6= 0 while φ(0, y) < 0 = φ(0, 0) for

y 6= 0. We conclude that (0, 0) is neither a maximum nor a minimum
in this case.

All of this, for purposes of application, clearly begs the question:

how can we tell, given a real, symmetric matrix A, into which of the
categories the quadratic form q(X) = X∗AX falls? We will indicate

some tests below, without giving the proofs - they really are a topic for
a course in linear algebra.
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Tests for Classification of A If A is a real, symmetric n×n matrix,
and q(X) = X∗AX, then

i) q(X) is positive if and only if all of the eigenvalues λ of the matrix

A are positive;

ii) q(X) is negative if and only if all of the eigenvalues λ of the matrix
A are negative;

iii) q(X) is non-negative if and only if all of the eigenvalues λ of the

matrix A are non-negative;

iv) q(X) is non-positive if and only if all of the eigenvalues λ of the
matrix A are non-positive;

i) q(X) is indefinite if some of the eigenvalues λ of the matrix A are

positive and some are negative.

The eigenvalues of A are the roots of the scalar n-th degree polyno-
mial equation

det (λ I − A) = 0,

where I is the n × n identity matrix

I =




1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1




.

A further test for positivity (or negativity if we apply it to −A, is

the following: the quadratic form q(X) = X∗AX is positive if and
only if detB > 0 for all m × m matrices B, 0 < m ≤ n, formed

in the following way. Distinct integers k1, k2, ..., km, listed in increasing
order, are selected from the integers 1 through n. Then B is formed

from the entries of A which lie in the rows and columns numbered

10



k1, k2, ..., km. This test quickly becomes unwieldy and, indeed, unusable
for even moderately large values of n; the eigenvalue test is preferable.

If A has the form A = C∗C for some m × n dimensional matrix

then q(X) = X∗AX is automatically non-negative because

q(X) = X∗AX = X∗C∗CX = ‖CX‖2 .

If, in addition, m ≥ n and there is no X 6= 0 such that CX = 0,
then q(X) is positive.

Example 3 Consider the function φ(x, y) = sin(x+y) + cos(x−y).

We compute

∂φ

∂x
(x, y) = cos(x+y) − sin(x−y),

∂φ

∂y
(x, y) = cos(x+y) + sin(x−y).

It is easy to see that both of these partial derivatives vanish if and only

if both cos(x + y) and sin(x− y) are zero, and this is true if and only if

x + y =
(2k + 1)π

2
, x − y = j π

for some integers k and j. Solving for x and y we have

x =
(2k + 1)π

4
+

jπ

2
, y =

(2k + 1)π

4
− jπ

2
.

There are infinitely many stationary points. Taking k = 1, j = 1 we
obtain one of these, namely

x =
3π

4
+

π

2
=

5π

4
, y =

3π

4
− π

2
=

π

4
.

For general x and y the Hessian matrix is

∇2φ(x, y) =

(− sin(x + y) − cos(x − y) − sin(x + y) + cos(x − y)
− sin(x + y) + cos(x − y) − sin(x + y) − cos(x − y)

)
.
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For the point we selected we have x + y = 3π
2 , x − y = π, so the

Hessian matrix there is

∇2φ

(
5π

4
,
π

4

)
=


− sin

(
3π
2

)
− cos(π) − sin

(
3π
2

)
+ cos(π)

− sin
(

3π
2

)
+ cos(π) − sin

(
3π
2

)
− cos(π)


 =

(
2 0
0 2

)
.

We readily conclude in this case that the Hessian matrix is positive and
the point x = 5π

2 , y = π
4 is a local minimum for φ(x, y).

On the other hand, if we take k = 1 and j = 2, corresponding to

the point x = 7π
4 , y = −π

4 , we find in the same way that

∇2φ

(
7π

4
,−π

4

)
=

(
0 2
2 0

)
.

The eigenvalues of this matrix are the roots of

det

(
λ −2
−2 λ

)
= λ2 − 4 = 0,

which are ±2. The Hessian in this case is indefinite; we have neither a
local maximum nor a local minimum.
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